1 A and 120 mA Thin-Film Multijunction Thermal Converters

Hector Laiz (INTI)

Thomas Wunsch (Sandia)

Joseph Kinard (NIST)

Thomas Lipe (NIST)

Contents

- Background
- Project goals
- Present status of project
- Future plans
- Conclusions

Background

 NIST has relied on high-current thermoelements for current measurements.
Other NMIs rely on current shunt/TE

combinations

Background

- Thin-film technology will enable us to make high-current thermal converters with much better performance than either the Weston TEs or shunt/TE combinations
- Benefits:
 - Higher accuracy
 - Lower cost/Mass production

Background

- The NIST standards are old (c.1960), and many have been lost
 - Overloading
 - Random age-related failures
 - Cannot be replaced or repaired
- NIST is in critical need of new, highperformance standards

Project Goal

 To develop new high-current thermoelements for measurement of ac currents up to 10 A

Project Goal

- Develop 1 A and 120 mA TEs
- Use in parallel combinations to scale to 10 A

MJTC combinations to scale from 100 mA to 10 A			
1 MJTC	2 in parallel	4 in parallel	8 in parallel
120 mA	240 mA	480 mA	1 A
1 A	2 A	4 A	10 A

Why not shunts?

- Lower voltage drop across heater
 - Reduces temperature-dependent errors
- Smaller skin effect
 - Reduces high-frequency error
- High impedance to ground
- Larger output emfs
 - Scaling accuracy

1 A MJTC Design Parameters

- 0.1 V drop across heater
 - 100 mW heater power
 - -0.1Ω heater resistance
- Requirements
 - New chip design
 - New low-resistance heater material

1 A MJTC Design Parameters

$$\beta_{S} = \frac{1}{S} \frac{\partial S}{\partial T} \approx \frac{1}{\alpha_{A/B}} \frac{\partial \alpha_{A/B}}{\partial T} - \frac{1}{G_{T}} \frac{\partial G_{T}}{\partial T} - \frac{\alpha}{A} \frac{\partial G_{T}}{\partial T} = \frac{1}{A} \frac{\partial G_{T}}{\partial T} =$$

of Seebeck coefficient

Temperature coefficient Temperature coefficient of Temperature coefficient thermal conductance of heater resistance

 Use CuAu heater to optimize the temperature coefficient of the sensitivity

$$-\beta_s = +3.2 \times 10^{-3} \text{ K}^{-1} \text{ (gold)}$$

$$-\beta_s = -6.0 \times 10^{-4} \text{ K}^{-1} \text{ (Evanohm)}$$

$$-\beta_s = -2.5 \times 10^{-4} \text{ K}^{-1} \text{ (copper-gold)}$$

1 A MJTC Chip Design

1 A MJTC Thermal Simulation

Temperature distribution on one-half the 1 A MJTC

1 A MJTC Temperature Profile

1 A MJTC Simulation Results

- Most heat is conducted through the heater
 - High conductivity
 - Large cross section
- Small temperature gradient
 - Reduced Thomson errors

1 A MJTC Simulation Results

- High thermal conductance of the Si frame
 - Reduced Peltier errors
- Thermocouple banks disconnected
 - External connection reduces highfrequency errors

1 A MJTC Measurements

Time constant: 0.5 s Dc reversal: < 10 μA/A

120 mA MJTC Chip Design

- Test: 1 A design, Evanohm heater
 - 833 mV drop for 100 mW power
 - Increased ac-dc difference from leakage capacitance
- Design goals:
 - 100 mV drop at 120 mA:12 mW power
 - Heater resistance of 0.83 Ω

120 mA Chip Design

- Propose to use 400 Ω TVC design with these modifications:
 - Disconnect thermocouple banks
 - Reduces high frequency errors
 - Place thermocouples 10 µm from obelisk
 - Reduces capacitive coupling
 - CuAu heater
 - 3 000 μm x 220 μm x 1 μm

120 mA MJTC Chip Design

120 mA MJTC Thermal Simulation

Temperature distribution on one-half the 120 mA MJTC

Future Plans

- Fabricate MJTCs at NIST (Boulder, CO)
 - We need many more chips than we have
 - We need better communication with the fabrication facility
- Build high-current (10 A) multiconverter modules

Conclusions

- 1 A MJTCs
 - Designed
 - Modeled
 - Fabricated (a few)
 - Measured
 - Ac-dc Differences shown to be extremely small from 10 Hz to 100 kHz
 - Measurements agree with simulation
 - Presently addressing fabrication issues

Conclusions

- 120 mA MJTCs
 - Designed
 - Modeled
 - Hope to begin fabrication soon

